Table of contents

Table of contents		
Methodologies for the synthesis of β-carbolines		
Siobhan Boswood, Stefan Roesner		
1. Introduction		
2. Oxidation of tetrahydro- and dihydro-β-carbolines		
3. Methodologies that generate the pyridine ring		
3.1. Pictet-Spengler reaction		
3.2. Bischler-Napieralski reaction		
3.3. Condensation reactions		
3.4. Iminoannulation reactions		
3.5 Palladium-catalyzed reactions		
3.6. Other transition metal-catalyzed reactions		
3.7. Miscellaneous reactions		
4. Methodologies that generate the central pyrrole ring		
4.1. Palladium-catalyzed procedures		
4.2. Miscellaneous procedures that generate the pyrrole ring		
5. Cascade reactions that generate the pyrrole as well as the pyridine ring		
5.1. Transition metal-catalyzed cycloadditions		
5.2. Other cascade sequences		
6. Conclusions		
Acknowledgements		
References		
 Heterocyclic α-oxoesters (hetaryl glyoxylates): synthesis and chemical transformations. Part 2. Bohdan V. Vashchenko, Oleksandr Geraschenko, Oleksandr O. Grygorenko 1. Introduction 2. Synthesis of 1,2-azolyl glyoxylates and their fused analogs 3. Chemical transformations of 1,2-azolyl glyoxylates and their fused analogs 4. Synthesis of 1,3-azolyl glyoxylates and their fused analogs 5. Chemical transformations of 1,3-azolyl glyoxylates and their fused analogs 5.1. Functional group interconversions 		
5.2. Heterocyclizations		
6. Synthesis and chemical transformations of triazolyl glyoxylates		
7. Synthesis of azine-derived glyoxylates		
8. Chemical transformations of azine-derived glyoxylates		
9. Conclusions		
Acknowledgement		
References		
Azanaphthoquinones: privileged scaffolds in nature. Biological activities, synthesis, and 51		
regioselective reactions		
Paulo C. M. L. Miranda, Nelson H. Morgon, Joaquim A. M. Castro, Alan R. S. Davide,		
Lucas C. Santana, Caio M. Porto		
1. Introduction		
2. Azanaphthoquinones bearing substituents at positions 1 or 2		
3. Azanaphthoquinones bearing substituents at positions 3 or 4		
4. Azanaphthoquinones bearing substituents at positions 6 or 7		
5. Theoretical aspects for regioselectivity of the nucleophilic attack at azanaphthoquinones6. Conclusion		

Acknowledgments References

Cyclization of alkynes under metal-free conditions: synthesis of indoles Roberto do Carmo Pinheiro, Gilson Zeni	65
Introduction Synthesis of indoles <i>via</i> electrochemical-mediated cyclization of alkynes Synthesis of indoles <i>via</i> oxidative nucleophilic cyclization of alkynes Synthesis of indoles <i>via</i> cyclization of alkynes promoted by microwave irradiation Synthesis of indoles <i>via</i> radical-promoted cyclization of alkynes Synthesis of indoles <i>via</i> base-promoted cyclization of alkynes Synthesis of indoles <i>via</i> nucleophilic cyclization of alkynes promoted by electrophiles Miscellaneous strategies Conclusion cknowledgements eferences	
Synthesis and heterocyclizations of ortho-amino(alkynyl)naphthalenes	82
1. Introduction 2. Synthesis of <i>ortho</i> -amino(alkynyl)naphthalenes 2.1. Synthesis 2-alkynylnaphthalen-1-amines 2.2. Synthesis of 1-alkynylnaphthalen-2-amines 2.3. Synthesis of 3-alkynylnaphthalen-2-amines 3. Heterocyclizations of <i>ortho</i> -amino(alkynyl)naphthalenes 3.1. Heterocyclizations of 2-alkynylnaphthalen-1-amines 3.2. Heterocyclizations of 1-alkynylnaphthalen-2-amines 3.3. Heterocyclizations of 3-alkynylnaphthalen-2-amines 4. Conclusions References	
Construction of substituted 2-pyrazolines	116
 Yi-Kang Zhang, Peng An 1. Introduction 2. Reactions between hydrazines and α,β-unsaturated enones 3. Intramolecular amination of β,γ-unsaturated hydrazones 4. 1,3-Dipolar cycloaddition between nitrile imine and alkenes 5. Through Huisgen zwitterions 6. Other methods 7. Conclusion Acknowledgment References 	
Visible-light-induced synthesis of phosphorylated compounds	134
 Fan Gao, Bing Yu Introduction Visible-light-induced synthesis in homogeneous systems Phosphorylation reactions catalyzed by transition metal complex photocatalysts Phosphorylation reactions catalyzed by metal-free organic photocatalysts Phosphorylation reactions in photocatalyst-free conditions Visible-light-induced synthesis in heterogeneous systems Conclusions Acknowledgment References 	

Recent progress on atropenantioselective synthesis of axially chiral pyrroles	151
Yu-Jing Xi, Xiao-Ming Zhao, Sheng-Cai Zheng	
1. Introduction	
2. Axially chiral pyrroles bearing stereogenic axis at N1-position	
2.1. "De novo ring formation" strategy	
2.2. "Desymmetrization" strategy	
2.3. "(Dynamic) kinetic resolution" strategy3. Axially chiral pyrroles bearing stereogenic axis at C2-position	
3.1. "De novo ring formation" strategy	
3.2. "Central-to-axial chirality " strategy	
4. Axially chiral pyrroles bearing stereogenic axis at C3-position	
4.1. " <i>De novo</i> ring formation" strategy	
4.2. "Kinetic resolution" strategy	
4.3. "Central-to-axial chirality" strategy	
5. Conclusion	
Acknowledgement	
References	
	1.64
Recent advances in catalytic asymmetric synthesis of chiral pyridine derivatives	164
Huilong Zhu, Xiaowei Dou 1. Introduction	
2. Catalytic asymmetric addition to unsaturated double bonds	
3. Catalytic asymmetric reduction	
4. Catalytic asymmetric cross-coupling	
5. Catalytic asymmetric C–H functionalization	
6. Miscellaneous reactions	
7. Conclusion	
Acknowledgement	
References	
Synthesis of dimenia and between lethnough dimenization	100
Synthesis of dimeric aryls and heteroaryls through dimerization Hai-Lei Cui	180
1. Introduction	
2. Formation of aryl-aryl bond	
3. Formation of heteroaryl-heteroaryl bond	
4. Conclusion	
Acknowledgement	
References	
	202
Recent advances in electrochemical synthesis of diversified functionalized	202
spiro[n.5]enone derivatives	
Ju Wu, Yufen Zhao 1. Introduction	
2. Electrochemical synthesis of functionalized spiro[4.5]dienone derivatives	
3. Electrochemical synthesis of functionalized spiro[4.5]trienone derivatives	
4. Electrochemical synthesis of functionalized spiro[5.5]trienone derivatives	
5. Conclusion	
Acknowledgment	
References	
Cycloannulation strategies for the direct construction of 3-functionalized benzoheteroles	223
Raju Jannapu Reddy, Arram Haritha Kumari, Nunavath Sharadha	

 Introduction Synthesis of 3-acylated benzoheteroles Cycloannulation of 1,6-enynes Cycloannulation through acyl group migration Cycloannulation through C-H functionalization Oxidative cycloannulations Construction of 3-sulfonyl benzoheteroles Sulfonylative-cycloannulation using sodium sulfinates Sulfonylative-cycloannulation using other sulfonyl sources Sulfonylative-cycloannulation through three component coupling reactions Miscellaneous cycloannulations Synthesis of 3-vinyl benzoheteroles Cycloannulation through alkenyl group migration Alkenylative-cycloannulations Miscellaneous Conclusions Acknowledgement References 	
Synthetic approaches to 4-aryl-3,4-dihydrocoumarins Sandhya Singh Yadav, Jyoti Sharma, Sagar B. Khandekar, Rodney A. Fernandes	254
1. Introduction	
2. Metal-free approaches	
2.1. Zeolites	
2.2. Protic acids2.3. Solid acids	
2.4. Lewis acids	
2.5. Other metal-free catalysts	
3. Transition metal-mediated or -catalysed approaches	
3.1. Iron-mediated or -catalyzed methods	
3.2. Copper-catalyzed method	
3.3. Rhodium-catalyzed methods	
3.4. Palladium-catalyzed methods	
4. Organocatalysis approaches	
5. Conclusions and outlook Acknowledgement	
References	
Realistic catalysts for the cycloaddition of CO ₂ to epoxides under ambient conditions	282
to generate cyclic organic carbonates: the case of coordination compounds and	
naturally available hydrogen bond donors Tanika Kessaratikoon, Suthida Kaewsai, Valerio D'Elia	
1. Introduction	
2. Cycloaddition of CO ₂ to epoxides catalyzed by coordination compounds	
2.1. Homogeneous coordination compounds	
2.2. Surface-supported coordination compounds	
3. Cycloaddition of CO ₂ to epoxides catalyzed by biobased H-bond donors	
3.2. Recyclable biobased H-bond donors	
4. Conclusions and outlook	
Acknowledgements References	
References	

Metal-catalyzed borylative cyclization reactions of polynsaturated substrates for the synthesis 30	9
<u>of heterocycles</u>	
Inés Manjón-Mata, M. Teresa Quirós	
1. Introduction	
2. Borylative cyclization reactions of dienes	
2.1 Rhodium-catalyzed borylative cyclizations	
2.2 Copper-catalyzed borylative cyclizations	
2.3 Palladium-catalyzed borylative cyclizations	
3. Borylative cyclization reactions of enynes	
3.1 Rhodium-catalyzed borylative cyclizations	
3.2 Palladium-catalyzed borylative cyclizations	
3.3 Ruthenium-catalyzed borylative cyclizations	
3.4 Gold-catalyzed borylative cyclizations	
3.5 Iron-catalyzed borylative cyclizations	
3.6 Cobalt-catalyzed borylative cyclizations	
3.7 Nickel-catalyzed borylative cyclizations	
3.8 Copper-catalyzed borylative cyclizations	
4. Borylative cyclization reactions of diynes	
4.1 Cobalt-catalyzed borylative cyclizations	
4.2 Copper-catalyzed borylative cyclizations	
5. Borylative cyclization reactions of allenynes and enallenes	
5.1 Palladium-catalyzed borylative cyclizations	
5.2 Nickel-catalyzed borylative cyclizations	
6. Borylative cyclization reactions of bisallenes	
6.1 Palladium-catalyzed borylative cyclizations	
7. Diborylative cyclization reactions	
7.1. Palladium-catalyzed diborylative cyclization of dienes	
7.2. Nickel-catalyzed diborylative cyclization of enynes	
8. Conclusions	
Acknowledgements	
References	
Synthesis of benzo[b] furan derivatives by transition metal-catalyzed heterocyclizations 341	1
of 2-ethynylphenols	_
Rubén Miguélez, Omar Arto, José Manuel González, Pablo Barrio	
1. Introduction	
2. Heterocyclization employing gold-catalysis	
3. Heterocyclization employing other transition metal-catalysis	
4. Conclusions	
Acknowledgements	
References	
Synthesis and application of diaza[5]helicenes 36	0
Marina Degač, Martin Kotora	_
1. Introduction	
2. Symmetric <i>m</i> , <i>n</i> -diaza[5]helicene	
2.1. List of symmetric <i>m,n</i> -diaza[5]helicenes	
2.2. 1,14-Diaza[5]helicenes (benzo[1,2- <i>h</i> :4,3- <i>h</i> ']diquinolines)	
2.2.1. Synthesis	
2.2.2. Properties and application	
2.3. 2,13-Diaza[5]helicenes (benzo[1,2-h:4,3-h']diisoquinolines)	
2.3.1. Synthesis	

VI
2.3.2. Properties and application
2.4. 3,12-Diaza[5]helicenes (benzo[2,1-f:3,4-f']diisoquinolines)
2.4.1. Synthesis
2.5. 4,11-Diaza[5]helicenes (benzo[2,1-f:3,4-f']diquinolines)
2.5.1. Synthesis
2.5.2. Properties and application
2.6. 5,10-Diaza[5]helicenes (dibenzo[<i>a</i> , <i>k</i>][3,8]phenanthrolines)
2.6.1. Synthesis
2.6.2. Properties and application

- 2.7. 6,9-Diaza[5]helicenes (dibenzo[a,k][4,7]phenanthrolines)
 - 2.7.1. Synthesis
- 2.7.2. Properties and application
- 2.8. 7,8-Diaza[5]helicenes (benzo[f]naphtho[2,1-c]cinnolines)
 - 2.8.1. Synthesis
 - 2.8.2. Properties and application
- 3. Unsymmetric *m*,*n*-diaza[5]helicenes
- 3.1. List of unsymmetric *m*,*n*-diaza[5]helicenes
- 3.2. Synthesized unsymmetric *m*,*n*-diaza[5]helicenes
 - 3.2.1. Synthesis
- 3.2.2. Properties and application
- 3.3. Other unsymmetric m,n-diaza[5]helicenes
- 4. Selected physical properties of *m,n*-diaza[5]helicenes
- 4.1. X-ray data
- 5. Conclusion and perspectives

References

Recent developments in C-H functionalization of carbazoles

378

Srinivasarao Arulananda Babu, Ramandeep Kaur, Harcharan Singh, Amit Kumar

- 1. Introduction
- 2. Synthesis of alkylated carbazoles *via* C–H alkylation
- 2.1. C1 Alkylation
- 2.2. C2 Alkylation
- 2.3. C3 Alkylation
- 2.4. C4 Alkylation
- 3. Synthesis of C–H arylated carbazoles *via* C–H arylation
- 4. Synthesis of C-H alkenylated, alkynylated, and allylated carbazoles
- 4.1. C1 Alkenylation/alkynylation/allylation
- 5. C-H Acylation, acetoxylation, cyanation, borylation, halogenation, perfluoroalkylation, chalcogenation, amidation/amination, N-carbazolation of carbazole
 - 5.1. C1 Acylation, acetoxylation, cyanation, and amidation reactions
- 5.2. C-H Chalcogenation of carbazole
- 5.3. C-H Borylation, halogenation, perfluoroalkylation, and N-carbazolation of carbazole
- 6. Oxidative cross-coupling with carbazole
- 7. Intramolecular C–H cyclization involving carbazole
- 8. Annulation reaction involving C-H bond of carbazole towards modified carbazole
- 9. C-H Functionalization of tetrahydrocarbazole
- 10. C-H Deuteration in carbazole
- 11. Miscellaneous reactions involving C-H functionalization of carbazoles
- 12. Conclusion

References

The tambjamines: pyrrolylpyrromethene-containing alkaloids with diverse biological profiles 425

Liangguang Yi, Martin G. Banwell, Ping Lan, Claudia Pessoa

- 1. Introduction
- 2. Isolation, structural elucidation, ecological roles and distribution of the producing organisms
- 3. Biogenesis
- 4. Biological and related activities
- 5. Total syntheses of the tambjamines
- 6. Synthesis of analogues and their biological profiles
- 7. Prospects for the development of the tambiamines as therapeutic agents
- 8. Conclusions

Acknowledgements

References and notes

Syntheses of fluorine-containing heterocyclic compounds *via* direct and indirect methods using difluorocarbenes

Kohei Fuchibe, Junji Ichikawa

- 1. Introduction
- 2. Syntheses using difluorocarbenes: direct methods
- 2.1. Synthesis of difluoromethoxy- and difluoromethylsulfanyl-substituted pyridine, oxazole, and pyran derivatives via difluoromethylation
- 2.2. Synthesis of (di)fluorothiazoline, (di)fluorooxazoline, and (di)fluoropyrroline derivatives via [4+1]-annulation
- 2.3. Synthesis of fluorothienothiophenes and fluorothienofurans via abnormal [4+1]-annulation
- 3. Syntheses starting from fluorinated cyclopropanes: indirect methods
 - 3.1. Synthesis of (di)fluorothiophene derivatives *via* single activation of the trifluoromethyl group
- 3.2. Synthesis of (difluoroethyl)benzoxazines *via* regioselective three-membered ring opening
- 4. Conclusions

Acknowledgements

References